Efficient Semiparametric Marginal Estimation for the Partially Linear Additive Model for Longitudinal/Clustered Data.
نویسندگان
چکیده
We consider the efficient estimation of a regression parameter in a partially linear additive nonparametric regression model from repeated measures data when the covariates are multivariate. To date, while there is some literature in the scalar covariate case, the problem has not been addressed in the multivariate additive model case. Ours represents a first contribution in this direction. As part of this work, we first describe the behavior of nonparametric estimators for additive models with repeated measures when the underlying model is not additive. These results are critical when one considers variants of the basic additive model. We apply them to the partially linear additive repeated-measures model, deriving an explicit consistent estimator of the parametric component; if the errors are in addition Gaussian, the estimator is semiparametric efficient. We also apply our basic methods to a unique testing problem that arises in genetic epidemiology; in combination with a projection argument we develop an efficient and easily computed testing scheme. Simulations and an empirical example from nutritional epidemiology illustrate our methods.
منابع مشابه
Efficient semiparametric estimation in generalized partially linear additive models for longitudinal/clustered data
We consider efficient estimation of the Euclidean parameters in a generalized partially linear additive models for longitudinal/clustered data when multiple covariates need to be modeled nonparametrically, and propose an estimation procedure based on a spline approximation of the nonparametric part of the model and the generalized estimating equations (GEE). Although the model in consideration ...
متن کاملEfficient Semiparametric Marginal Estimation for Longitudinal/Clustered Data
We consider marginal generalized semiparametric partially linear models for clustered data. Lin and Carroll derived the semiparametric efficient score function for this problem in the multivariate Gaussian case, but they were unable to construct a semiparametric efficient estimator that actually achieved the semiparametric information bound. Here we propose such an estimator and generalize the ...
متن کاملEfficient Estimation in Marginal Partially Linear Models for Longitudinal/Clustered Data Using Splines
We consider marginal semiparametric partially linear models for longitudinal/clustered data and propose an estimation procedure based on a spline approximation of the nonparametric part of the model and an extension of the parametric marginal generalized estimating equations (GEE). Our estimates of both parametric part and nonparametric part of the model have properties parallel to those of par...
متن کاملSemiparametric regression for clustered data
We consider estimation in a semiparametric partially generalised linear model for clustered data using estimating equations. A marginal model is assumed where the mean of the outcome variable depends on some covariates parametrically and a cluster-level covariate nonparametrically. A profile-kernel method allowing for working correlation matrices is developed. We show that the nonparametric par...
متن کاملSimultaneous variable selection and estimation in semiparametric modeling of longitudinal/clustered data
We consider the problem of simultaneous variable selection and estimation in additive, partially linear models for longitudinal/clustered data. We propose an estimation procedure via polynomial splines to estimate the nonparametric components and apply proper penalty functions to achieve sparsity in the linear part. Under reasonable conditions, we obtain the asymptotic normality of the estimato...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics in biosciences
دوره 1 1 شماره
صفحات -
تاریخ انتشار 2009